首页
 
当前位置:首页>首页>最新成果
Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm

论文题目:

Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm

英文论文题目:

Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm

第一作者:

李思佳

英文第一作者:

lisijia

联系作者:

宋开山

英文联系作者:

K. Song, S

外单位作者单位:

 

英文外单位作者单位:

 

发表年度:

2021

:

778

:

 

页码:

146271-146271

摘要:

Lake eutrophication has attracted the attention of the government and general public. Chlorophyll-a (Chl-a) is a key indicator of algal biomass and eutrophication. Many efforts have been devoted to establishing accurate algorithms for estimating Chl-a concentrations. In this study, a total of 273 samples were collected from 45 typical lakes across China during 2017-2019. Here, we proposed applicable machine learning algorithms (i.e., linear regression model (LR), support vector machine model (SVM) and Catboost model (CB)), which integrate a broad scale dataset of lake biogeochemical characteristics using Multispectral Imager (MSI) product to seamlessly retrieve the Chl-a concentration. A K-means clustering approach was used to cluster the 273 normalized water leaving reflectance spectra [Rrs (lambda)] extracted from MSI imagery with Case 2 Regional Coast Colour (CR2CC) processor into three groups. The pH, electrical conductivity (EC), total suspended matter (TSM) and dissolved organic carbon (DOC) from three clustering groups had significant differences (p<0.05**), indicating that water quality parameters have an integrated impact on Rrs(lambda)-spectra. The results of machine learning algorithms integrating demonstrated that SVM obtained a better degree of measured- and derived- fitting (calibration: slope=0.81, R2=0.91; validation: slope=1.21, R2=0.88). On the contrary, the documented nine Chl-a algorithms gave poor results (fitting 1:1 linear slope<0.4 and R2<0.70) with synchronous train and test datasets. It demonstrated that machine learning provides a robust model for quantifying Chl-a concentration. Further, considering three Rrs(lambda) clustering groups by k-means, Chl-a SVM model indicated that cluster 1 group gave a better retrieving performance (slope=0.71, R2=0.78), followed by cluster 3 group (slope=0.77, R2=0.64) and cluster 2 group (slope=0.67, R2=0.50). These are related to the low TSM and high DOC levels for cluster-1 and cluster-3 Rrs(lambda) spectra, which reduce the influence of particle in red bands for Rrs(lambda) signal. Our results highlighted the quantification of lake Chl-a concentrations using MSI imagery and SVM, which can realize the large-scale monitoring and more appropriate for medium/low Chl-a level. The remote estimation of Chl-a based on artificial intelligence can provide an effective and robust way to monitor the lake eutrophication on a macro-scale; and offer a better approach to elucidate the response of lake ecosystems to global change.

英文摘要:

Lake eutrophication has attracted the attention of the government and general public. Chlorophyll-a (Chl-a) is a key indicator of algal biomass and eutrophication. Many efforts have been devoted to establishing accurate algorithms for estimating Chl-a concentrations. In this study, a total of 273 samples were collected from 45 typical lakes across China during 2017-2019. Here, we proposed applicable machine learning algorithms (i.e., linear regression model (LR), support vector machine model (SVM) and Catboost model (CB)), which integrate a broad scale dataset of lake biogeochemical characteristics using Multispectral Imager (MSI) product to seamlessly retrieve the Chl-a concentration. A K-means clustering approach was used to cluster the 273 normalized water leaving reflectance spectra [Rrs (lambda)] extracted from MSI imagery with Case 2 Regional Coast Colour (CR2CC) processor into three groups. The pH, electrical conductivity (EC), total suspended matter (TSM) and dissolved organic carbon (DOC) from three clustering groups had significant differences (p<0.05**), indicating that water quality parameters have an integrated impact on Rrs(lambda)-spectra. The results of machine learning algorithms integrating demonstrated that SVM obtained a better degree of measured- and derived- fitting (calibration: slope=0.81, R2=0.91; validation: slope=1.21, R2=0.88). On the contrary, the documented nine Chl-a algorithms gave poor results (fitting 1:1 linear slope<0.4 and R2<0.70) with synchronous train and test datasets. It demonstrated that machine learning provides a robust model for quantifying Chl-a concentration. Further, considering three Rrs(lambda) clustering groups by k-means, Chl-a SVM model indicated that cluster 1 group gave a better retrieving performance (slope=0.71, R2=0.78), followed by cluster 3 group (slope=0.77, R2=0.64) and cluster 2 group (slope=0.67, R2=0.50). These are related to the low TSM and high DOC levels for cluster-1 and cluster-3 Rrs(lambda) spectra, which reduce the influence of particle in red bands for Rrs(lambda) signal. Our results highlighted the quantification of lake Chl-a concentrations using MSI imagery and SVM, which can realize the large-scale monitoring and more appropriate for medium/low Chl-a level. The remote estimation of Chl-a based on artificial intelligence can provide an effective and robust way to monitor the lake eutrophication on a macro-scale; and offer a better approach to elucidate the response of lake ecosystems to global change.

刊物名称:

The Science of the total environment

英文刊物名称:

The Science of the total environment

论文全文:

 

英文论文全文:

 

全文链接:

 

其它备注:

 

英文其它备注:

 

学科:

 

英文学科:

 

影响因子:

 

第一作者所在部门:

 

英文第一作者所在部门:

 

论文出处:

 

英文论文出处:

 

论文类别:

 

英文论文类别:

 

参与作者:

S. Li, K. Song, S. Wang, G. Liu, Z. Wen, Y. Shang, L. Lyu, F. Chen, S. Xu, H. Tao, Y. Du, C. Fang and G. Mu

英文参与作者:

S. Li, K. Song, S. Wang, G. Liu, Z. Wen, Y. Shang, L. Lyu, F. Chen, S. Xu, H. Tao, Y. Du, C. Fang and G. Mu